rate. The mean rate of discharge of the isolated AVN was $72 + 11/\min$.

10 CT preparations, when isolated from the musculi pectinati, continued discharging. These were subsequently cut transversely into 2-4 pieces: after variable times (up to 1 min) each discharged at a rate varying between the initial rate of the entire CT and its half value. In 3 of the preparations, 1 CT piece did not show automaticity.

Action potentials with a variable slope of diastolic depolarization were recorded from a limited area of the deep layer of any spontaneously discharging isolated CT-musculi pectinati preparation, as shown in figure 1a. The amplitude of these action potentials was between 80 and 90 mV and their $V_{\rm max}$ between 90 and 140 V/sec. The location of the pacemaker area varied within the CT deep layer. Similar pacemaker potentials were recorded by Paes de Carvalho et al. 6 from the sinoatrial ring bundle, but not from the superficial CT layer. An example typical of action potentials recorded from the deep layer outside the pacemaker region is shown in figure 1b. These action potentials were homogeneous, had a mean amplitude of $114\pm2.1~{\rm mV}$ and a mean $V_{\rm max}$ of $374\pm14~{\rm V/sec}$.

V_{max} of action potentials were plotted against the take-off potentials of all records of the CT deep layer and a sigmoidal relationship was found (fig. 2). Experimental data are in good agreement with the sigmoidal curve drawn from the equation of Hodgkin and Huxley⁹

$$h = \frac{1}{1 + \exp(V_h - V)/s}$$
 (1)

where, according to Weidmann 10 , h is the fraction of the highest value observed for the rate of rise, V the take-off potential in mV, V_h the potential at which h is half maximum and s the slope factor. $V_h = 75.3$ mV and s = 5.78 were determined according to Noma and Irisawa 11 . The sigmoidal relationship found is similar to that reported by Weidmann 10 in the ventricular Purkinje fibers but largely differs from that in sinoatrial pacemaker fibers 11 . Another resemblance to Purkinje fibers is the relatively steep rate of rise.

The fine morphology and particularly the ultrastructural features of the mitochondria shown in figure 3, demonstrate the excellent in depth preservation of the CT, comparable to the state of preservation of the CT excised from hearts perfused by the Langendorff method¹.

The present findings demonstrate that a) the CT deep layer fibers can act as pacemaker, discharging at a rate intermediate to the rates of the 2 nodes. b) Pacemaker activity, as a property of the deep layer cells, can be observed throughout the CT (all the pieces cut from it discharged spontaneously). c) The high discharge rate recorded from the isolated crista indicates that this area, being inherently faster than the AVN pacemaker, would probably be the faster pacemaker in the absence of SAN pacing. d) From the electrophysiological characteristics a resemblance of the CT deep layer pacemaker potentials and those of Purkinje fibers emerges.

- G.L. Avanzino, D. Blanchi, A. Calligaro, R. Ermirio and M. Fisher, J. Physiol. 313, 10 (1981).
- 2 G.L. Avanzino, D. Blanchi, A. Calligaro, R. Ermirio and M. Fisher, J. Physiol. 313, 81 (1981).
- W.C. Randall, J. Talano, M.P. Kaye, D. Euler, S. Jones and G. Brynjolfsson, Am. J. Physiol.; Heart Circ. Physiol. 3, H465 (1978).
- 4 S.B. Jones, D.E. Euler, W.C. Randall, G. Brynjolfsson and E.L. Hardie, Am. J. Physiol.; Heart Circ. Physiol. 7, H788 (1980).
- 5 J.P. Boineau, R.B. Schuessler, D.B. Hackel, C.B. Miller, C.W. Brockus and C. Wylds, Am. J. Physiol.; Heart Circ. Physiol. 8, H406 (1980).
- 6 A. Paes De Carvalho, W.C. de Mello and B.F. Hoffman, Am. J. Physiol. 196, 483 (1959).
- 7 M.J. Karnovsky, J. Cell Biol. 27, 137A (1965).
- 8 M.J. Janse, J. Tranum-Jensen, A.G. Kleber and F.J.L. van Capelle, in: The sinus node, p. 183. Ed. F.I.M. Bonke. Martinus Nijhoff Medical Division, The Hague 1978.
- 9 A. L. Hodgkin and A. F. Huxley, J. Physiol. 116, 497 (1952).
- 10 S. Weidmann, J. Physiol. 127, 213 (1955).
- 11 A. Noma and H. Irisawa, Jap. J. Physiol. 24, 617 (1974).

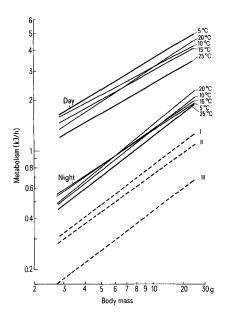
Metabolism-weight relationship in 17 humming-bird species at different temperatures during day and night

R. Prinzinger, K. Krüger and K.L. Schuchmann

Lehrstuhl Zoophysiologie, Universität Tübingen, Auf der Morgenstelle 28, D-7400 Tübingen 1 (Federal Republic of Germany), 9 April 1981

Summary. The mean metabolic rate during day and night of 17 different humming-bird species is considerably higher than the expected value for nonpasserine birds. The weight-metabolism regression exponent for the night-time is in the same range as that reported for other avian orders (and mammals); 0.73.

Previous studies have established a higher basal metabolism in the Passeriformes in comparison to the other avian orders (Nonpasseres). Our investigations in 24 different relatively small nonpasserine birds¹, however, showed no pronounced differences relating to the metabolic rate per unit body mass. As a comprehensive analysis of the thermoregulatory process requires adequate knowlegde of the levels of energy production, it was of great interest to study humming-birds, which include the smallest (nonpasserine) bird species.


Materials and methods. The humming-bird species examined are listed in the table. The metabolism of each species was continuously recorded during a period of at least 5 consecutive days (and nights) at different environmental temperatures between 2 °C and 25 °C. Each temperature was tested for 24 h (1 day). The dark-light cycle

was 12:12 h; food was provided ad libitum. Measuring instruments: Hartmann & Braun Magnos 2T and Uras 2T (6 channels). For more details see Prinzinger².

Results and discussion. Both during day and night, and at all temperatures tested the metabolism of all the humming-birds was considerably higher than the theoretically expected value for nonpasserine birds (fig.). This fact could also be confirmed for nights, in which torpor (strongly reduced metabolic rate) occurred. The mean metabolism-weight regression line of the day-time values follows the equation $M = 0.83 \cdot W^{0.56}$ (M = metabolism in KJ/h and W = b.wt in g). That of the night-time values is $M = 0.67 \cdot W^{0.73}$. The regression exponent of the night-time values corresponds satisfactorily with the results of previous examinations (Dawson and Hudson³, 0.720; Aschoff and Pohl⁴, 0.734; Prinzinger and Hänssler¹, 0.716). During the day-time the

Species, sex, mean body mass and mean metabolic rate at different ambient temperatures of the humming-birds examined. The 1st number in the table is the mean day-time metabolism, the 2nd number the mean night-time metabolism

Species	Sex	Mean body mass [g]	Mean metabolism $[J/g \cdot h]$ at 2 5 10 12			15	20	25 °C	
		body mass [g]							
Ocreatus underwoodii	٥	2.7			715 187		604 274	507 199	493 203
Chlorostilbon mellisugus	. 3	2,9		689 159	636 164		419 143	479 184	428 182
Orthorhyncus cristatus 1	<i>उ</i>	2,9		475 142	450 106		416 163	477 230	375 132
Orthorhyncus cristatus 2	♂	2.9	•		456 183		520 288	313 141	300 102
Archilochus alexandri	. ै	2.9		532 249	598 298		626 297		477 235
Archilochus alexandri	Ŷ	3,3			615 241		533 288	535 228	478 170
Acestrura mulsant	9	3,3		575 231	484 74		358 58	487 94	446 85
Urosticte benjamini	·	3,9		674 268	601 349		596 260	358 113	274 120
Trochilus scitulus	\$	4.0		432 152	450 95		513 131	529 207	513 237
Chrysuronia oenone	ð	5.0		497 162	500 171		489 207	490 179	431 175
Florisuga mellivora 1	उँ	6.0		529	483 146		466 127		
Florisuga mellivora 2	ŝ	6,9		525 236	353 187		398 225	488 223	404 202
Agleactis cupripennis	φ.	7,2		388 74	382 135	370 106	306 101	302 116	247 126
Boissonneaua matthewsii	. 9	7.2		410 163	352 206	367 226	310 188	309 179	276 163
Anthracothorax nigricollis	\$	7.7	458 196	367 215	383 229	386 244	314 203	315 180	268 143
Eugenes fulgens	<i>ै</i>	7,9	529 148	453 159	386 191		411 177	367 147	285 117
Lampornis clemenciae 1	♂	8.0					439 105	378 152	252 71
Lampornis clemenciae 2	₫	8,3		410 159	360 242		298 173	333 170	302 141
Oreotrochilus estella 1	8	8.5	\ \	351 98	350 93		292 117	276 129	290 166
Oreotrochilus estella 2	ŝ	8.9	226	268 62	267 60	281 73	267 68	296 108	217 111
Eulampis jugularis	ð	9.5	396 132	362 149	310 118	305 164	231 111	260 170	204 108
Patagona gigas	9	17.5			256 99		240 138	250 103	197 94

bigger humming-birds were calmer than the smaller species. This results in the lower regression exponent of the day-time values.

These results show that weight-metabolism regression cannot be established correctly over a wide range of body mass and that a division between a high 'passerine metabolic rate' and a lower 'nonpasserine metabolic rate' is not justified for the small nonpasserine humming-birds; nor does it seem to be justified for other relatively small nonpasserine avian orders.

- 1 R. Prinzinger and I. Hänssler, Experientia 36, 1299 (1980).
- 2 R. Prinzinger, Anz. orn. Ges. 15, 1 (1976).
- 3 R. Dawson and J.W. Hudson, in: Comparative Physiology of Thermoregulation, vol. 1, p. 223. Ed. C. Whittow. Academic Press, New York and London 1970.
- 4 J. Aschoff and H. Pohl, J. Orn. 111, 38 (1970).

Energy metabolism as a function of body weight at different temperatures in 17 humming-bird species during day and night. Regression lines: I, Dawson and Hudson³, basal metabolism of passerine birds; II, Prinzinger and Hänssler¹, basal metabolism of nonpasserine birds; III, Aschoff and Pohl⁴, nonpasserines.

Vitellogenin synthesis induced in locust fat body by juvenile hormone analog in vitro¹

Randa Abu-Hakima²

Department of Biology, Group in Eukaryotic Molecular Biology and Evolution, Queen's University, Kingston (Ontario K7L 3N6, Canada), 17 February 1981

Summary. Fat bodies from adult females of Locusta migratoria continue to synthesize vitellogenin and other proteins when cultured in vitro. A strong secondary induction of vitellogenin synthesis was obtained in fat bodies cultured in the presence of methoprene, and a weaker but significant primary induction was also obtained using higher doses (> $100 \mu g$) of methoprene.

In many insects, the synthesis of vitellogenin (VG; yolk precursor protein) in the fat body is regulated by juvenile hormone (JH)³⁻⁵. Since VG may represent more than 50% of the protein secreted by the stimulated tissue, the system is favorable for the study of the action of JH, a unique sesquiterpenoid hormone, at the cellular level. In order to establish freedom from interactions with other tissues, as well as precise timing and control of conditions, it is important to obtain hormonal induction in fat body isolated in vitro. Although the induction of VG synthesis by steroid hormones in tissues of other animals has been

achieved in vitro (by ecdysterone in mosquito fat body⁶; by estradiol in amphibian liver^{7,8}), only preliminary, poorly reproducible data on induction by JH in vitro have heretofore been reported⁹. We now describe the strong secondary induction, and the weaker but significant primary induction of the synthesis of VG by a JH analog added to cultured fat body from African migratory locusts.

Locusta migratoria migratorioides was reared in the laboratory as previously described 10,11. In order to eliminate endogenous JH, instead of using surgery, the corpora allata were destroyed by treating female locusts, within 12 h after

Table 1. Secondary stimulation of protein synthesis in locust fat body by methoprene added in vitro

Dose of methoprene in vivo (µg)	Level of methoprene Culture time (h) in vitro (µg/ml)		Incorporation of (cpm/mg tissue) Total protein VC	VG synthesis (% of total)	
00	0	3	1671 ± 180	167±30	10
00	0	48	1251 ± 111	146 ± 52	12
00	10	48	6441 ± 106	3682 ± 299	57
00	50	48	7040 ± 326	3927 ± 223	56
60	0	3	1890 ± 205	69 ± 17	4
60	0	48	1887 ± 132	127 ± 31	7
60	10	48	4399 ± 470	1829 ± 38	42
60	50	48	6131 ± 536	2481 ± 280	41
30	0	3	1262 ± 96	29 ± 16	2
30	0	48	1377 ± 102	84 ± 27	6
30	10	48	2250 ± 892	733 ± 142	33
30	50	48	6317 ± 713	1938 ± 186	31

Precocene-treated adult female locusts were injected with methoprene and then kept for 14 days for decay of the primary stimulation. Fat bodies were then removed and cultured with and without methoprene. Proteins synthesized and secreted into the medium were assayed by the incorporation of ³H-leucine during the last 3 h of culturing. Data are means ± SEM from groups of 4 fat bodies individually cultured.